

Declaration Owner

Bull Moose Tube

+1.888.227.5430 | www.bullmoosetube.com | techsupport@bullmoose.com

Burlington, ON 2170 Queensway Dr. Burlington, Ontario L7R 3T1, Canada

Casa Grande, AZ 1001 North Jefferson Ave. Casa Grande, AZ 8512

555 E 16th St. Chicago Heights, IL 60411

Chicago Heights; IL

Elkhart, IN 29851 County Rd. 20 West Elkhart, IN 46517

Sinton, TX

Gerald, MO

Masury, OH

Gerald, MO 63037

1433 Standard Ave. SE

Masury, OH 44438

406 E Industrial Dr./Hwy. 50

8534 Hwy 89 Sinton, TX 78387

Trenton, GA 195 North Industrial Dr. Trenton, GA 30752

Product:

Steel Pipe and Tube

Declared Unit

The declared unit is one metric ton of steel tube and pipe

EPD Number and Period of Validity

SCS-EPD-07425

EPD Valid November 9, 2021 through November 8, 2026 Version Date: September 11, 2024

Product Category Rule

PCR Guidance for Version 3.2. UL Environment. Sept. 2018
PCR Guidance for Building-Related Products and Services. Part B:
Designated Steel Construction Product EPD Requirements. UL
Environment. August 2020.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration owner:	Bull Moose Tube
Address:	See cover full list of facilities included in EPD
Declaration Number:	SCS-EPD-07425
Declaration Validity Period:	EPD Valid November 9, 2021 through November 8, 2026
Version Date:	September 11, 2024
Program Operator:	SCS Global Services
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide
LCA Practitioner:	Tess Garvey, Ph.D., SCS Global Services
LCA Software and LCI database:	OpenLCA 1.10 and 2.0 software and the Ecoinvent v3.7.1 database
Product's Intended Application:	Steel Pipe and Tube
Product RSL:	n/a
Markets of Applicability:	Global
EPD Type:	Product-Specific
EPD Scope:	Cradle-to-Gate
LCIA Method and Version:	CML-IA and TRACI 2.1
Independent critical review of the LCA and	
data, according to ISO 14044 and ISO 14071	☐ internal
LCA Reviewer:	Thomas Glorid, Ph.D., Industrial Ecology Consultants
Part A	PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment
Product Category Rule:	Calculation Rules and Report Requirements. Version 3.2. UL Environment. Sept. 2018
Part A PCR Review conducted by:	Lindita Bushi, PhD (Chair); Hugues Imbeault-Tétreault, ing., M.Sc.A.; Jack Geibig
Part B	PCR Guidance for Building-Related Products and Services. Part B: Designated Steel
Product Category Rule:	Construction Product EPD Requirements. UL Environment. August 2020.
Part B PCR Review conducted by:	Thomas Gloria, PhD; Brandie Sebastian, James Littlefield
Independent verification of the declaration and data, according to ISO 14025 and the PCR	□ internal ⊠ external
EPD Verifier:	Thomas Gloria, Ph.D., Industrial Ecology Consultants
Declaration Contents:	1. Bull Moose Tube 2 2. Products 2 3. LCA: Calculation Rules 6 4. LCA: Scenarios and Additional Technical Information 10 5. LCA: Results 11 6. LCA: Interpretation 28 7. References 32

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and ISO 21930.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

In accordance with ISO 21930:2017, EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

1. Bull Moose Tube

Bull Moose Tube is a division of Bull Moose Industries. Founded in 1962, Bull Moose Tube boast more than a half-century of steadfast commitment to serving customers requiring steel pipe and tube. Our products demonstrate our enduring commitment to quality, innovation and service.

One key contributor to our quality is our unique manufacturing method. Bull Moose Tube utilizes the direct form process to produce Hollow Structural Shapes (HSS), eliminating a parent round tube prior to forming a square or rectangle profile. This approach enables us to start with only the highest grade steel, reduce residual stresses, form sharper corners, craft the straightest tube, and make the most consistent welds. This EPD represents steel tubes produced by Bull Moose Tube Company at the following manufacturing sites: Burlington, ON; Casa Grande, AZ; Chicago Heights; IL; Elkhart, IN; Gerald, MO; Masury, OH; Trenton, GA; and their newest facility in Sinton, TX.

2. Products

2.1 PRODUCT DESCRIPTION

Steel Tubes covered under this declaration represent hollow structural sections, mechanical tube, and sprinkler pipe. These products can have circular, square, or rectangular cross sections, and are widely used in building, bridge and industrial projects. Bull Moose Tube produces tube in the range of 0.50" to 12", with wall thickness of 0.0359" to 0.625". Bull Moose Tube produces Pipe from 1" NPS to 4" NPS. The engineered wall thickness of Bull Moose pipe is Schedule 10 and Schedule 40.

Cradle-to-Gate TRACI 2.1 100 GWP for HSS

Table 1 below provides the TRACI 2.1 100-year GWP for one metric ton of steel pipe or tube manufacture (A1-A3), prior to downstream transport or tube or pipe fabrication.

 Table 1. 100-year Global Warming Potential, based on TRACI 2.1, for one metric ton of steel produced (A1-A3)

	Cradle-to-Gate Hollow Structural Section (Unfabricated)					
Mill location	Value	Unit				
Burlington	1.75	metric ton CO2e per 1 metric ton HSS				
Casa Grande	1.91	metric ton CO2e per 1 metric ton HSS				
Chicago Heights	1.68	metric ton CO2e per 1 metric ton HSS				
Gerald	1.82	metric ton CO2e per 1 metric ton HSS				
Elkhart	1.69	metric ton CO2e per 1 metric ton HSS				
Masury	1.72	metric ton CO2e per 1 metric ton HSS				
Sinton*	1.12	metric ton CO2e per 1 metric ton HSS				
Trenton	1.75	metric ton CO2e per 1 metric ton HSS				

^{*}note Sinton only receives EAF steel

2.2 PRODUCT FLOW DIAGRAM

A flow diagram illustrating the production processes and life cycle phases included in the scope of the EPD is provided below

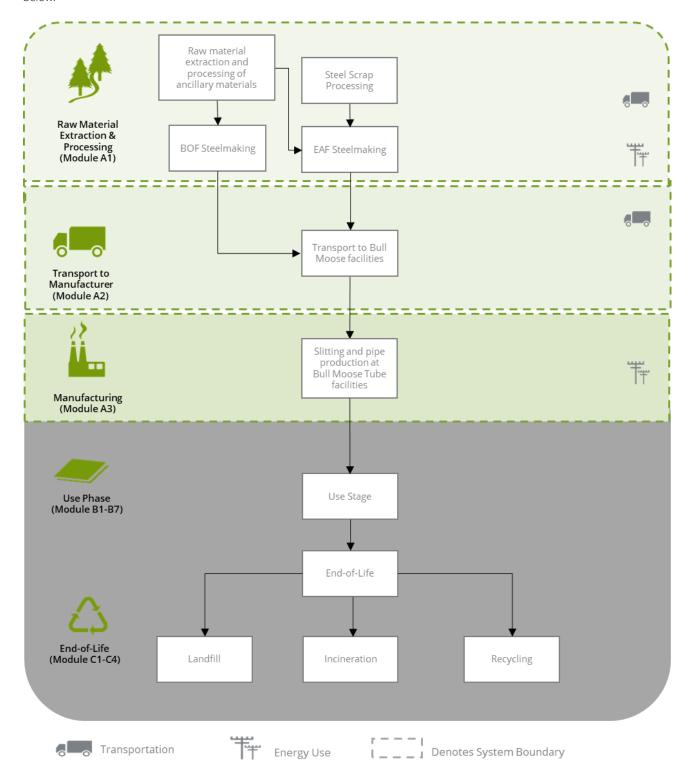


Figure 1. Flow Diagram for the life cycle of the Bull Moose Tube steel pipe and tube.

© 2024 SCSglobalServices.com 3

2.4 DECLARATION OF METHODOLOGICAL FRAMEWORK

The scope of the EPD is cradle-to-gate, including raw material extraction and processing, transportation, steel manufacture and rolling. The life cycle phases included in the product system boundary are shown below.

Table 2. Life cycle phases included in the Bull Moose Tube steel pipe and tube product system boundary.

Р	roduct			truction ocess				Use					End-of	-life		Benefits and loads beyond the system boundary
A1	A2	А3	A4	A5	B1	B1	ВЗ	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recoveny and/or recydling potential
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

X = Module Included | MND = Module Not Declared

Cut-off and allocation procedures are described below and conform to the PCR and ISO standards.

2.5 TECHNICAL DATA

Steel Tubes produced by Bull Moose are defined by the following ASTM Standards:

ASTM A135 Standard Specification for Electric-Resistance-Welded Steel Pipe.

ASTM A252 Standard Specification for Welded and Seamless Steel Pipe Piles

ASTM A500 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Tubing in Rounds and Shapes.

ASTM A513 Standard Specification for Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing.

ASTM A787 Standard Specification for Electric-Resistance-Welded Metallic-Coated Carbon Steel Mechanical Tubing.

ASTM A795 Standard Specification for Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use.

ASTM A847 Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance.

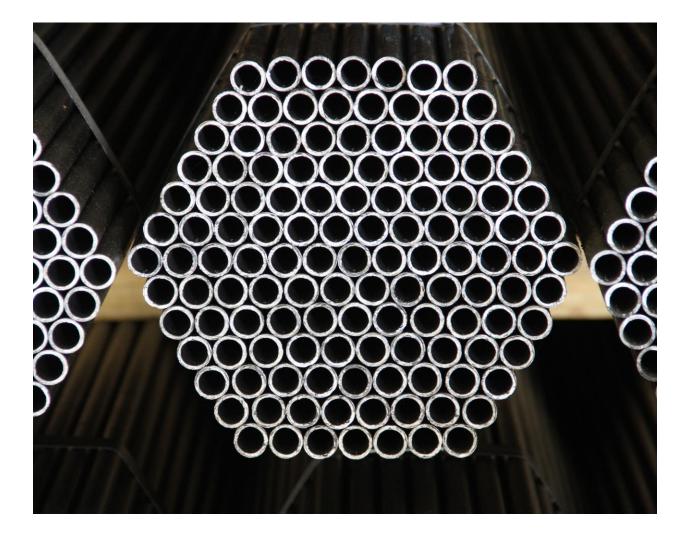
ASTM A1076 Standard Specification for Cold-Formed Structural Steel Tubing from Metallic Precoated Steel Sheets.

ASTM A1085 Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS).

ASTM A1110 Standard Specification fpr Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes with 52KSI minimum yield strength and impact requirements.

ASTM A1112 Standard Specification for Cold-Formed Welded High Strength Carbon Steel or High Strength Low-Alloy Hollow Structural Sections (HSS) in Rounds and Shapes.

The CSI codes that products are classified under depend on the final use of the product.


2.6 INTENDED APPLICATION

The intended application of the steel pipe and tube is for use in building, bridge and industrial projects and serve the primary function of conveying various substances.

2.7 MATERIAL COMPOSITION

The steel pipe and tube modeled in this study contain steel with an alloy content lower than 3%. In general, the reinforcing steel products will contain 97-99% iron, including ≤1.25% Manganese, ≤1.25% Carbon, <1% Silicon, <1% Aluminum, and other alloying elements, each less than 0.1% of the total.

Steel tube and pipe products under normal conditions do not present inhalation, ingestion, or contact health hazards. These products are used inside the building envelope, or other structures, and do not include materials or substances which have potential route of exposure to humans or flora/fauna in the environment.

© 2024 SCSglobalServices.com

2.8 PROPERTIES OF DECLARED PRODUCT AS DELIVERED

The steel pipe and tube is delivered as steel tube or pipe, in sizes meeting customer specifications. Bull Moose Tube produces tube in the dimensional range of 0.50" to 12", with wall thickness of 0.0359" to 0.625". Bull Moose Tube produces pipe from 1" NPS to 4" NPS. The wall thickness of Bull Moose pipe is Schedule 10 and Schedule 40, and special engineered design wall thicknesses.

2.9 MANUFACTURING

The steel pipe and tube in this study is manufactured at various sites including Burlington, ON; Casa Grande, AZ; Chicago Heights; IL, Elkhart; IN, Gerald, MO; Masury, OH; Sinton, TX; and Trenton, GA.

2.10 PACKAGING

Packaging consists of metal banding, lumber and wood for dunnage, plastic film and plastic tarps, depending upon the mill.

2.11 FURTHER INFORMATION

Further information on the product can be found on the manufacturers' website at www.bullmoosetube.com.

3. LCA: Calculation Rules

3.1 DECLARED UNIT

The declared unit used in the study is defined as one (1) metric ton of bar, consistent with the PCR.

Table 3. The modules and unit processes included in the scope for the Bull Moose Tube steel pipe and tube.

Module	Module Description	Unit Processes Included in Scope
A1	Extraction and processing of raw materials; any reuse of products or materials from previous product systems; processing of secondary materials; generation of electricity from primary energy resources; energy, or other, recovery processes from secondary fuels	Raw material extraction and processing, including all activities necessary for the reprocessing steel scrap, including but not limited to the recovery or extraction and processing of feedstock materials. Steelmaking at North American EAF and BOF Steel mills.
A2	Transport (to the manufacturer)	Transportation from steel mills to Bull Moose facilities throughout North America
A3	Manufacturing, including ancillary material production	Manufacture of steel tube including slitting and tube/pipe mill
A4	Transport (to the building site)	Module Not Declared
A5	Construction-installation process	Module Not Declared
B1	Product use	Module Not Declared
B2	Product maintenance	Module Not Declared
В3	Product repair	Module Not Declared
B4	Product replacement	Module Not Declared
B5	Product refurbishment	Module Not Declared
В6	Operational energy use by technical building systems	Module Not Declared
В7	Operational water uses by technical building systems	Module Not Declared
C1	Deconstruction, demolition	Module Not Declared
C2	Transport (to waste processing)	Module Not Declared
C3	Waste processing for reuse, recovery and/or recycling	Module Not Declared
C4	Disposal	Module Not Declared
D	Reuse-recovery-recycling potential	Module Not Declared

.....

3.4 UNITS

All data and results are presented using SI units.

3.5 ESTIMATES AND ASSUMPTIONS

- Representative inventory data were used to reflect the energy mix for electricity use. Supply mixes were modeled based on U.S. EPA eGRID subregions AZNM for Casa Grande, AZ, RFCW for Chicago Heights, IL, Elkhart, IN and Masury, OH, SRSO for Trenton, GA, SRMW for Gerald, MO, in which the Bull Moose Tube facilities are located.
- The production of steel was modeled with secondary data using representative rates of EAF/BOF steelmaking in North America. The datasets utilized for steel production are provided in Section 4.4
- The same process is performed for the Sinton, TX facility using the eGRID 2022 data and ERCT subregion. The HBI dataset is updated to reflect the use of natural gas as the primary fuel in direct reduction, as is common in the US. The ecoinvent dataset for steelmaking uses HBI in proportion with the supplier's stated usage.
- Representative inventory data for raw materials and ancillary materials were modeled with unit process data taken from Ecoinvent.
- Disposal of manufacturing waste is modeled based for solid and hazardous waste generation and disposal in the United States, as specified in the PCR. Specifically, 80% of non-hazardous wastes are disposed in landfill and 20% incinerated. Transportation for end-of-life scenarios was modeled using the EPA WARM model assumption of 20 miles (~32 km), from the point of product use to a landfill, material recovery center, or waste incinerator. Ecoinvent datasets are used to model the impacts associated with incineration and landfilling, which does not include energy recovery from landfill gas.

The PCR requires the results for several inventory flows related to construction products to be reported including energy and resource use and waste and outflows. These are aggregated inventory flows, and do not characterize any potential impact; results should be interpreted considering this limitation.

3.6 CUT-OFF RULES

According to the PCR, processes contributing greater than 1% of the total environmental impact indicator for each impact are included in the inventory. No data gaps were allowed which were expected to significantly affect the outcome of the indicator results. No known flows are deliberately excluded from this EPD.

3.7 DATA SOURCES

Primary data were provided by Bull Moose Tube for their manufacturing facility. The sources of secondary LCI data are the Ecoinvent database.

7

Table 4. Data sources for the Bull Moose Tube steel pipe and tube.

Flow	Dataset	Data Source	Publication Date
Raw Materials			Date
Hot rolled coil	steel production, converter, low-alloyed steel, low-alloyed Cutoff, U – RoW steel production, electric, low-alloyed steel, low-alloyed Cutoff, U - RoW* *modified sponge iron dataset to reflect production in the US in Sinton update hot rolling, steel hot rolling, steel Cutoff, U BullMoose - RoW	Ecoinvent 3.7.1	2020
Cold rolling	LCI taken from "Life Cycle Inventories of North American Steel Products"	Sphera for AISI	2020
Pickling	LCI taken from "Life Cycle Inventories of North American Steel Products" market for hydrochloric acid, without water, in 30% solution state hydrochloric acid, without water, in 30% solution state Cutoff, U - RoW	Sphera for AISI Ecoinvent 3.7.1	2020
Galvanization	LCI taken from "Life Cycle Inventories of North American Steel Products" market for zinc zinc Cutoff, U - GLO	Sphera for AISI Ecoinvent 3.7.1	2020 2020
Water	market for tap water tap water Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Lubricant	lubricating oil production lubricating oil Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Electricity/Heat			
Electricity	electricity voltage transformation from high to medium voltage electricity, medium voltage Cutoff, U - CA-ON electricity voltage transformation from high to medium voltage electricity, medium voltage Cutoff- US (Various) modified for egrid 2019 production mixes	Ecoinvent 3.7.1 Ecoinvent 3.7.1 eGRID 2019	2020 2020 2021
Propane	market for propane propane Cutoff, U - GLO	Ecoinvent 3.7.1	2020
Natural gas	market for heat, district or industrial, natural gas heat, district or industrial, natural gas Cutoff, U – RoW market group for natural gas, high pressure natural gas, high pressure Cutoff, U - CA	Ecoinvent 3.7.1	2020
Acetylene	acetylene production acetylene Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Oxygen	Oxygen, liquid, at plant - RNA	US LCI	2012
Diesel	market for diesel diesel Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Heavy fuel oil	market for heavy fuel oil heavy fuel oil Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Light fuel oil	market for light fuel oil light fuel oil Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Carbon dioxide	carbon dioxide production, liquid carbon dioxide, liquid Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Transportation			
Road	market for transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Packaging			
Wood packaging and dunnage	EUR-flat pallet production EUR-flat pallet Cutoff, U - RoW	Ecoinvent 3.7.1	2020
Metal banding	market for steel, low-alloyed steel, low-alloyed Cutoff, U - GLO	Ecoinvent 3.7.1	2020
Plastic film	packaging film production, low density polyethylene packaging film, low density polyethylene Cutoff, U - RoW	Ecoinvent 3.7.1	2020

3.8 DATA QUALITY

The data quality assessment addressed the following parameters: time-related coverage, geographical coverage, technological coverage, precision, completeness, representativeness, consistency, reproducibility, sources of data, and uncertainty.

Table 5. Data quality assessment for the Bull Moose Tube steel pipe and tube product system.

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 10 years old (typically 2015 or more recent). All of the data used represented an average of one year's worth of data collection. Manufacturer-supplied data (primary data) are based on annual production for 2020. Primary data for Sinton manufacturer consisted of three months of data from January – March of 2024, as this is a new facility and not able to provide a full year as yet. The ecoinvent 3.7.1 database was used for consistency with the previous model.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Actual processes for upstream operations are primarily North American. Surrogate data used in the assessment are representative of North American operations. Data representative of European operations are considered sufficiently similar to actual processes. Data representing product disposal are based on regional statistics.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of pipe and tube. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used with a bias towards Ecoinvent v3.7.1 data where available. Different portions of the product life cycle are equally considered; however, it must be noted that final disposition of the product is based on assumptions of current average practices in Europe and the United States. Some updates to the model for inclusion of the Sinton facility have been noted, including the fuel source for HBI, eGRID and openLCA versions, which are inconsistenct with previous model, but are required for improved accuracy.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at the Bull Moose Tube manufacturing facilities represent an annual average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. The Ecoinvent database is used for secondary LCI datasets.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the steel products is low. Actual supplier data for upstream operations was not available for all suppliers and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment method required by the PCR includes impact potentials, which lack characterization of providing and receiving environments or tipping points.

9 © 2024 SCSglobalServices.com

3.9 PERIOD UNDER REVIEW

The period of review is January 01, 2020 through December 31, 2020 for the five facilities Burlington, Ontario (Canada), Casa Grande, AZ, Chicago Heights, IL, Elkhart, IN, Gerald, MO, Masury, OH, and Trenton, GA. The facility in Sinton, TX was opened in 2022, and as such the period of review for this facility is January 1 through March 31 of 2024.

3.10 ALLOCATION

With respect to the steel scrap, the 100-0 recycled content approach is used in which the recycled material bears only the burden of any processing from waste material.

Mass allocation was deemed the most accurate and reproducible way of calculating the energy and material requirements for the manufacture of the steel and steel products. Primary data for resource use (e.g., electricity, natural gas, water), waste/co-products, and emissions released, are allocated on a mass-basis as a fraction of total annual production.

The transportation from primary producer of material components (e.g., steel coil) to the Bull Moose Tube facilities is based on primary data provided by Bull Moose Tube, including modes, distances, and amount of steel transported. Transportation was allocated on the basis of the mass and distance the material was transported.

3.11 COMPARABILITY

The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

4. LCA: Scenarios and Additional Technical Information

Manufacturing

The steel products included in this study are manufactured from hot rolled coil, produced using an average mix of EAF and BOF steelmaking in North America, and formed into pipe or tube at the Bull Moose Tube facilities. A small amount of tubes manufactured in the Burlington, Ontario mill is produced from either pickled and oiled steel or hot dip galvanized steel. The transport of materials from upstream steelmaking and other materials production to Bull Moose Tube mills is based on primary data of the transport distance and mode of transport.

At the Bull Moose Tube facilities, the master coil is received and then slit into smaller, slit coils for each tube mill located in the plant. The slit coils are loaded into the tube mills and are formed into tubes and welded using electric resistance welding (ERW) and cut to length on the tube mill. The tubes are then packaged (bundled) and placed into the warehouse for shipment to customers. Packaging consists of metal banding, lumber and wood for dunnage, plastic film and plastic tarps, depending upon the mill.

The Bull Moose Tube mills are located in Burlington, Ontario (Canada), Casa Grande, AZ, Chicago Heights, IL, Elkhart, IN, Gerald, MO, Masury, OH, Sinton, TX and Trenton, GA. The electricity supply mixes for each facility are modeled using ecoinvent electricity grids and modified for the appropriate eGRID 2019 subregions, with the exception of the Canadian mill and the Sinton, TX mill, which uses eGRID 2022. Electricity and resource use at the manufacturing facilities is allocated to the steel products based on product mass.

5. LCA: Results

Results of the Life Cycle Assessment are presented below. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

The following environmental impact category indicators are reported using characterization factors based on the U.S. EPA's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts - TRACI 2.1 and CML-IA.

CMLI-A Impact Category	Unit	TRACI 2.1 Impact Category	Unit
Global Warming Potential (GWP)	kg CO ₂ eq	Global Warming Potential (GWP)	kg CO ₂ eq
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 eq	Ozone Depletion Potential (ODP)	kg CFC 11 eq
Acidification Potential of soil and water (AP)	kg SO ₂ eq	Acidification Potential (AP)	kg SO ₂ eq
Eutrophication Potential (EP)	kg PO ₄ ³⁻ eq	Eutrophication Potential (EP)	kg N eq
Photochemical Oxidant Creation Potential (POCP)	kg C₂H₄ eq	Smog Formation Potential (SFP)	kg O₃ eq
Abiotic depletion potential (ADP-elements) for non-fossil resources	kg Sb eq	Fossil Fuel Depletion Potential (FFD)	MJ Surplus, LHV
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	MJ, LHV	-	

These impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes.

The following inventory parameters, specified by the PCR, are also reported.

Resources	Unit	Waste and Outflows	Unit
RPR _E : Renewable primary resources used as energy carrier (fuel)	MJ, LHV	HWD: Hazardous waste disposed	kg
RPR _M : Renewable primary resources with energy content used as material	MJ, LHV	NHWD: Non-hazardous waste disposed	kg
NRPR _E : Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	HLRW: High-level radioactive waste, conditioned, to final repository	kg
NRPR _M : Non-renewable primary resources with energy content used as material	MJ, LHV	ILLRW: Intermediate- and low-level radioactive waste, conditioned, to final repository	kg
SM: Secondary materials	metric ton	CRU: Components for re-use	kg
RSF: Renewable secondary fuels	MJ, LHV	MR: Materials for recycling	kg
NRSF: Non-renewable secondary fuels	MJ, LHV	MER: Materials for energy recovery	kg
RE: Recovered energy	MJ, LHV	EE: Recovered energy exported from the product system	MJ, LHV
FW: Use of net freshwater resources	m ³		-

Table 6. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Burlington, ON. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Catagory	Life cycle stage						
Impact Category	A1	A2	A3	Total (A1-A3)			
TRACI 2.1							
GWP (kg CO ₂ eq)	1,650	5.61	95.2	1,750			
0777 (Ng CO2 Cq)	94.23%	0.3%	5.5%	100%			
ΛΡ (kg SΩ- og)	6.39	0.0254	0.258	6.67			
AP (kg SO ₂ eq)	95.8%	0.4%	3.9%	100%			
	6.99	0.00624	0.426	7.42			
EP (kg N eq)	94%	0.1%	5.7%	100%			
CED (1 - O)	91.8	0.616	5.12	11.3			
SFP (kg O₃ eq)	100%	100%	100%	100%			
000 (1 656.44)	1.71×10 ⁻⁴	1.31x10 ⁻⁶	7.00×10 ⁻⁶	1.79x10 ⁻⁴			
ODP (kg CFC-11 eq)	95%	0.73%	3.91%	100%			
FFD (MI Curplus)	1,700	11.9	82.1	1,800			
FFD (MJ Surplus)	95%	0.66%	4.56%	100%			
CML-IA							
	1,670	5.63	95.6	1,770			
GWP (kg CO ₂ eq)	94%	0.32%	5.41%	100%			
15.4.60	6.16	0.0217	0.226	6.41			
AP (kg SO ₂ eq)	96%	0%	4%	100%			
== 4	3.31	0.00512	0.181	3.50			
EP (kg (PO ₄) $^{3-}$ eq)	95%	0.15%	5.17%	100%			
	0.629	7.24x10 ⁻⁴	0.0109	0.641			
POCP (kg C ₂ H ₄ eq)	98%	0.11%	1.70%	100%			
	1.34x10 ⁻⁴	9.81x10 ⁻⁷	5.33x10 ⁻⁶	1.40x10 ⁻⁴			
ODP (kg CFC-11 eq)	95.5%	0.7%	3.8%	100%			
	3.67x10 ⁻⁴	4.94x10 ⁻⁸	2.72×10 ⁻⁶	3.69x10 ⁻⁴			
ADPE (kg Sb eq)	99%	0.01%	0.74%	100%			
	20,200	83.1	675	21,000			
ADPF (MJ)	96%	0.40%	3.22%	100%			

Table7. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Burlington, ON. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Davamatav	Life cycle stage						
Parameter	A1	A2	A3	Total (A1-A3)			
Resources							
RPR _E (MJ)	1,320	0.937	366	1,680			
IXI IXE (IVIJ)	78%	0.1%	22%	100%			
RPR _M (MJ)	0.00	0.00	89.0	89.0			
	0%	0.0%	100%	100%			
NRPR _E (MJ)	18,600	79.1	1,110	19,800			
INIXE IVE (IVIJ)	94%	0%	6%	100%			
NIDDD (MI)	0.00	0.00	0.69	0.691			
NRPR _M (MJ)	0%	0%	100%	100%			
	0.764	0.00	0.00	0.764			
SM (MT)	100%	0.00%	0.00%	100%			
RSF/NRSF (MJ)	0.0	0.0	0.0	0.0			
RE (MJ)	0.0	0.0	0.0	0.0			
D11 (2)	17.9	0.0284	7.20	25.2			
FW (m ³)	71.3%	0.113%	28.6%	100%			
Wastes							
LIMD (kg)	0.0932	2.21x10 ⁻⁴	9.95x10 ⁻⁴	0.0944			
HWD (kg)	99%	0.234%	1.05%	100%			
A II IVA/D (1)	809	3.99	448	1,260			
NHWD (kg)	64.2%	0.316%	35.5%	100%			
	4.84x10 ⁻³	4.41 x 10 ⁻⁶	0.0129	0.0178			
HLRW (kg)	27.2%	0.025%	72.7%	100%			
	0.0642	5.50x10 ⁻⁴	6.44x10 ⁻³	0.0712			
ILLRW (kg)	90.2%	0.77%	9.05%	100%			
CRU (kg)	0.00	0.00	0.00	0.00			
	0.0	0.0	24.2	24.2			
MR (kg)	0%	0%	100%	100%			
MER (kg)	0	0	0	0			
EE (MJ)	Neg.	Neg.	Neg.	Neg.			

Table 8. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Casa Grande, AZ. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Life cycle stage						
Impact Category	A1	A2	A3	Total (A1-A3)			
TRACI 2.1							
GWP (kg CO ₂ eq)	1,750	112	50.0	1,910			
GVI (1/8 CO2 Cq)	91.5%	5.9%	2.619%	100%			
AP (kg SO_2 eq)	6.50	1.11	0.0991	7.70			
71 (kg 302 eq)	84.4%	14.4%	1.286%	100%			
	7.59	0.195	0.334	8.12			
EP (kg N eq)	93%	2.4%	4.112%	100%			
	95.4	32.9	1.51	130			
SFP (kg O₃ eq)	73.5%	25.3%	1.160%	100%			
ODD (I CEC 11)	1.10x10 ⁻⁴	2.12x10 ⁻⁵	4.00×10 ⁻⁶	1.35×10 ⁻⁴			
ODP (kg CFC-11 eq)	81%	15.71%	2.96%	100%			
FED (MI Surplus)	1,170	194	60.5	1,420			
FFD (MJ Surplus)	82%	13.61%	4.25%	100%			
CML-IA							
CMD (1:= CO -==)	1,770	112	50.5	1,930			
GWP (kg CO ₂ eq)	92%	5.81%	2.61%	100%			
AD (1 - CO)	6.22	0.869	0.0932	7.18			
AP (kg SO ₂ eq)	87%	12%	1%	100%			
FD (1 (DQ)3-	3.59	0.226	0.147	3.97			
EP (kg (PO ₄) ³⁻ eq)	91%	5.69%	3.71%	100%			
DOCD (L. C. L	0.667	0.0239	5.59x10 ⁻³	0.696			
POCP (kg C_2H_4 eq)	96%	3.43%	0.80%	100%			
ODD (1 - C5C 11 -)	8.84x10 ⁻⁵	1.59x10 ⁻⁵	3.01x10 ⁻⁶	1.07×10 ⁻⁴			
ODP (kg CFC-11 eq)	82.4%	14.8%	2.8%	100%			
	4.06x10 ⁻⁴	2.05x10 ⁻⁶	8.29x10 ⁻⁷	4.09x10 ⁻⁴			
ADPE (kg Sb eq)	99%	0.50%	0.20%	100%			
1005 (11)	17,600	1,440	609	19,700			
ADPF (MJ)	90%	7.30%	3.10%	100%			

Table 9. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Casa Grande, AZ. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Davamatav	Life cycle stage						
Parameter -	A1	A2	A3	Total (A1-A3)			
Resources							
RPR _E (MJ)	1,450	36.6	57.5	1,540			
IXI IXE (IVIJ)	94%	2.4%	4%	100%			
RPR _M (MJ)	0.00	0.00	1,340	1,340			
iti itim (ivij)	0.0%	0.0%	100%	100%			
NRPR _E (MJ)	16,200	1,380	634	18,200			
INIXE KE (IVIJ)	89%	8%	3%	100%			
NRPR _M (MJ)	0.0	0.0	0.00	0.00			
CNA (NAT)	0.850	0.000	0.000	0.850			
SM (MT)	100%	0.00%	0.00%	100%			
RSF/NRSF (MJ)	0	0	0	0			
RE (MJ)	0	0	0	0			
5 144 35	19.3	1.03	0.0692	20.4			
FW (m ³)	94.6%	5.06%	0.340%	100%			
Wastes							
HWD (kg)	0.0926	3.87x10 ⁻³	1.70×10 ⁻⁴	0.0966			
TIVUD (Kg)	96%	4.0%	0.18%	100%			
NILIM/D (kg)	893	17.5	2.35	913			
NHWD (kg)	98%	1.9%	0.26%	100%			
L II D A / (I)	5.29x10 ⁻³	1.64x10 ⁻⁴	7.53x10 ⁻⁴	6.21x10 ⁻³			
HLRW (kg)	85.2%	2.64%	12.1%	100%			
U. I. D. M. (L.)	0.0384	9.03x10 ⁻³	3.39x10 ⁻³	0.0508			
ILLRW (kg)	75.5%	17.8%	6.67%	100%			
CRU (kg)	0	0	0	0			
115 (1.)	0	0	140	140			
MR (kg)	0%	0%	100%	100%			
MER (kg)	0	0	0	0			
EE (MJ)	Neg.	Neg.	Neg.	Neg.			

Neg = negligible

The PCR require the calculation of carbon emissions and removals, all of which are negligible due to the fact that no biogenic carbon is included in the product and any packaging is negligible.

Table 10. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Chicago Heights, IL. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Catogory		Life cycl	e stage	
Impact Category	A1	A2	A3	Total (A1-A3)
TRACI 2.1				
GWP (kg CO ₂ eq)	1,580	48.3	53.7	1,680
GVVI (kg CO2 eq)	93.94%	2.9%	3.2%	100%
AD (kg 50 og)	5.88	0.219	0.174	6.27
AP (kg SO_2 eq)	93.7%	3.5%	2.8%	100%
	6.87	0.0538	0.196	7.12
EP (kg N eq)	96%	0.76%	2.76%	100%
(FD (I ())	86.3	5.31	1.78	93.4
SFP (kg O₃ eq)	92.4%	5.68%	1.91%	100%
000 (1 - 050 11)	9.87x10 ⁻⁵	1.13x10 ⁻⁵	3.57x10 ⁻⁶	1.14x10 ⁻⁴
ODP (kg CFC-11 eq)	87%	9.92%	3.14%	100%
FFD (A.II)	1,050	102	51.7	1,210
FFD (MJ surplus)	87%	8.47%	4.28%	100%
CML-IA				
CMD (In CO)	1,600	48.5	54.2	1,710
GWP (kg CO_2 eq)	94%	2.84%	3.18%	100%
AD (1 - CO)	5.62	0.187	0.174	5.98
$AP (kg SO_2 eq)$	94%	3.12%	2.90%	100%
ED (1 (DO)3-	3.25	0.0441	0.0910	3.39
EP (kg (PO ₄) ³⁻ eq)	96%	1.30%	2.69%	100%
DO 60 (L. 6.11)	0.603	6.23x10 ⁻³	8.25x10 ⁻³	0.618
POCP (kg C_2H_4 eq)	98%	1.01%	1.34%	100%
000 (656.11)	7.96x10 ⁻⁵	8.45x10 ⁻⁶	2.44x10 ⁻⁶	9.05x10 ⁻⁵
ODP (kg CFC-11 eq)	88.0%	9.3%	2.7%	100%
ADDE (L. CL.)	3.68x10 ⁻⁴	4.25×10 ⁻⁷	3.08×10 ⁻⁷	3.68×10 ⁻⁴
ADPE (kg Sb eq)	100%	0.12%	0.08%	100%
1555 (14)	15,900	716	591	17,200
ADPF (MJ)	92%	4.16%	3.43%	100%

Table 11. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Chicago Heights, IL. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Davamatav	Life cycle stage				
Parameter	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	1,310	8.08	120	1,440	
TXI IXE (IVIJ)	91%	0.6%	8%	100%	
RPR _M (MJ)	0.00	0.00	6.77	6.77	
111 11 _[V] (1*13)	0%	0.0%	100%	100%	
NRPR _E (MJ)	14,600	681	406	15,700	
INNE NE (IVIJ)	93%	4%	3%	100%	
NRPR _M (MJ)	0.0	0.0	0.00	0.00	
	0.776	0.000	0.000	0.776	
SM (MT)	100%	0.00%	0.00%	100%	
RSF/NRSF (MJ)	0.0	0.0	0.0	0.0	
RE (MJ)	0.0	0.0	0.0	0.0	
T. (2)	17.4	0.245	0.361	18.0	
FW (m ³)	96.6%	1.36%	2.00%	100%	
Wastes					
	0.0837	0.00190	3.32x10 ⁻⁴	0.0859	
HWD (kg)	97%	2.216%	0.39%	100%	
NILIVADO (L.)	808	34.4	5.31	848	
NHWD (kg)	95.3%	4.052%	0.6%	100%	
	4.79x10 ⁻³	3.80x10 ⁻⁵	3.56x10 ⁻⁵	4.86x10 ⁻³	
HLRW (kg)	98.5%	0.781%	0.73%	100%	
	0.0345	4.74x10 ⁻³	4.98×10 ⁻⁴	0.0397	
ILLRW (kg)	86.8%	11.9%	1.25%	100%	
CRU (kg)	0.0	0.0	0.0	0.0	
MD(L)	0.0	0.0	496	496	
MR (kg)	0%	0%	100%	100%	
MER (kg)	0.0	0.0	0.0	0.0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	
. 5,					

The PCR require the calculation of carbon emissions and removals, all of which are negligible due to the fact that no biogenic carbon is included in the product and any packaging is negligible.

Table 12. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Elkhart, IN. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category			Life cycle stage			
	A1	A2	A3	Total (A1-A3)		
TRACI 2.1						
GWP (kg CO ₂ eq)	1,640	18.5	31.3	1,690		
	97.05%	1.1%	1.9%	100%		
AP (kg SO_2 eq)	6.09	0.0839	0.101	6.28		
AP (kg 30 ₂ eq)	97.1%	1.3%	1.6%	100%		
	7.12	0.0206	0.118	7.26		
EP (kg N eq)	98%	0.28%	1.62%	100%		
CED (I O)	89.5	2.03	0.986	92.6		
SFP (kg O₃ eq)	97%	2.19%	1.07%	100%		
	1.03x10 ⁻⁴	4.31x10 ⁻⁶	1.94x10 ⁻⁶	1.09x10 ⁻⁴		
ODP (kg CFC-11 eq)	94%	3.96%	1.78%	100%		
	1,090	39.1	27.5	1,160		
FFD (MJ surplus)	94%	3.37%	2.37%	100%		
CML-IA						
CIMP (La CO and)	1,660	18.5	31.6	1,710		
GWP (kg CO ₂ eq)	97%	1.08%	1.85%	100%		
15.4 60	5.83	0.0715	0.101	6.01		
$AP (kg SO_2 eq)$	97%	1.19%	1.69%	100%		
3	3.37	0.0169	0.0542	3.44		
EP (kg (PO4)3- eq)	98%	0.49%	1.57%	100%		
	0.626	2.38x10 ⁻³	4.72x10 ⁻³	0.633		
POCP (kg C_2H_4 eq)	99%	0.38%	0.75%	100%		
	8.27x10 ⁻⁵	3.23x10 ⁻⁶	1.31x10 ⁻⁶	8.72x10 ⁻⁵		
ODP (kg CFC-11 eq)	94.8%	3.7%	1.5%	100%		
	3.81x10 ⁻⁴	1.63x10 ⁻⁷	1.29x10 ⁻⁷	3.82x10 ⁻⁴		
ADPE (kg Sb eq)	100%	0.04%	0.03%	100%		
	16,500	274	333	17,100		
ADPF (MJ)	96%	1.60%	1.95%	100%		

Table 13. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Elkhart, IN. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Dayanatay	Life cycle stage				
Parameter	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	1,360	3.09	61.2	1,420	
IXI IXE (IVIJ)	95%	0.2%	4%	100%	
RPR _M (MJ)	0.00	0.00	48.1	48.1	
IXI IXM (IVIJ)	0%	0.0%	100%	100%	
NRPR _E (MJ)	15,200	261	235	15,700	
INKEKE (IVIJ)	97%	2%	1%	100%	
NRPR _M (MJ)	0.0	0.0	1.94	1.94	
INKPKM (IVIJ)	0%	0%	100%	100%	
	0.798	0.000	0.000	0.798	
SM (MT)	100%	0.00%	0.00%	100%	
RSF/NRSF (MJ)	0	0	0	0	
RE (MJ)	0	0	0	0	
5) A (/ 2)	18.1	0.0937	0.164	18.3	
FW (m ³)	98.6%	0.51%	0.89%	100%	
Wastes					
HWD (kg)	0.0868	7.29x10 ⁻⁴	1.53x10 ⁻⁴	0.0877	
HVVD (Kg)	99%	0.831%	0.17%	100%	
NII IVA/ID (1:00)	838	13.1	2.25	854	
NHWD (kg)	98.2%	1.540%	0.263%	100%	
L II D\A/ (L -)	4.97x10 ⁻³	1.45x10 ⁻⁵	2.01x10 ⁻⁵	5.00x10 ⁻³	
HLRW (kg)	99.3%	0.290%	0.403%	100%	
II. I. D. M. (1)	0.0358	1.81x10 ⁻³	2.49x10 ⁻⁴	0.0379	
ILLRW (kg)	94.6%	4.78%	0.66%	100%	
CRU (kg)	0.0	0.0	0.0	0.0	
N 4D (I)	0.0	0.0	168	168	
MR (kg)	0%	0%	100%	100%	
MER (kg)	0.0	0.0	0.0	0.0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	

Table 14. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Gerald, MO. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Life cycle stage				
	A1	A2	A3	Total (A1-A3)	
TRACI 2.1					
GWP (kg CO ₂ eq)	1,630	101	87.4	1,820	
	89.6%	5.6%	4.8%	100%	
AP (kg SO ₂ eq)	6.06	0.455	0.235	6.75	
Ar (kg 30 ₂ eq)	89.8%	6.7%	3.5%	100%	
	7.06	0.106	0.554	7.72	
EP (kg N eq)	91%	1.38%	7.17%	100%	
CED (L. C.)	89.0	11.3	2.09	102	
SFP (kg O₃ eq)	87%	11.02%	2.04%	100%	
0004 65644	1.05x10 ⁻⁴	2.47x10 ⁻⁵	2.15x10 ⁻⁶	1.32x10 ⁻⁴	
ODP (kg CFC-11 eq)	80%	18.7%	1.63%	100%	
	1,120	224	23.3	1,360	
FFD (MJ surplus)	82%	16.40%	1.71%	100%	
CML-IA					
CIMP (La CO and)	1,650	102	87.9	1,840	
GWP (kg CO ₂ eq)	90%	5.53%	4.78%	100%	
15.4 CO)	5.81	0.388	0.235	6.43	
AP (kg SO ₂ eq)	90%	6.03%	3.66%	100%	
,, ,	3.34	0.0902	0.243	3.68	
EP (kg (PO ₄) ³⁻ eq)	91%	2.45%	6.61%	100%	
	0.621	0.0129	9.46x10 ⁻³	0.644	
POCP (kg C ₂ H ₄ eq)	97%	2.00%	1.47%	100%	
	8.46x10 ⁻⁵	1.86x10 ⁻⁵	1.06x10 ⁻⁶	1.04x10 ⁻⁴	
ODP (kg CFC-11 eq)	81.2%	17.8%	1.0%	100%	
	3.78x10 ⁻⁴	9.26x10 ⁻⁷	2.17x10 ⁻⁷	3.79x10 ⁻⁴	
ADPE (kg Sb eq)	100%	0.24%	0.06%	100%	
	16,600	1,530	744	18,900	
ADPF (MJ)	88%	8.10%	3.94%	100%	

Table 15. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Gerald, MO. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

B	Life cycle stage				
Parameter	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	1,340	20.6	74.9	1,440	
KPKE (IVIJ)	93%	1.4%	5.2%	100%	
RPR _M (MJ)	0.00	0.00	256	256	
IXI IXM (IVIJ)	0%	0.0%	100%	100%	
NRPR _E (MJ)	15,300	1,470	695	17,400	
INKEKE (IVIJ)	88%	8%	4%	100%	
NRPR _M (MJ)	0.0	0.0	0.00	0.00	
	0.791	0.000	0.000	0.791	
SM (MT)	100%	0.00%	0.00%	100%	
RSF/NRSF (MJ)	0	0	0	0	
RE (MJ)	0	0	0	0	
	17.9	0.965	0.0446	18.9	
FW (m ³)	94.7%	5.10%	0.235%	100%	
Wastes					
	0.0864	4.07x10 ⁻³	8.62x10 ⁻⁵	0.0906	
HWD (kg)	95%	4.492%	0.10%	100%	
AH DA(D (1)	831	74.8	2.90	909	
NHWD (kg)	91.4%	8.233%	0.3%	100%	
	4.92x10 ⁻³	1.18x10 ⁻⁴	2.16x10 ⁻⁵	5.06x10 ⁻³	
HLRW (kg)	97.2%	2.339%	0.4%	100%	
H D\A ()	0.0370	0.0106	1.99x10 ⁻⁴	0.0478	
ILLRW (kg)	77.4%	22.14%	0.42%	100%	
CRU (kg)	0	0	0	0	
MD	0	0	2.53	2.53	
MR (kg)	0%	0%	100%	100%	
MER (kg)	0	0	0	0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	

The PCR require the calculation of carbon emissions and removals, all of which are negligible due to the fact that no biogenic carbon is included in the product and any packaging is negligible.

Table 16. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Masury, OH. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Catogony	Life cycle stage				
Impact Category	A1	A2	A3	Total (A1-A3)	
TRACI 2.1					
GWP (kg CO ₂ eq)	1,630	9.85	81.8	1,720	
	94.68%	0.6%	4.8%	100%	
AD (kg SO . og)	6.06	0.0442	0.385	6.49	
AP (kg SO_2 eq)	93.4%	0.7%	5.9%	100%	
	7.08	0.0103	1.31	8.40	
EP (kg N eq)	84%	0.12%	15.6%	100%	
CED (I	89.0	1.10	4.3	94.4	
SFP (kg O₃ eq)	94%	1.16%	5%	100%	
ODD (1 - CEC 11)	1.02x10 ⁻⁴	2.40x10 ⁻⁶	5.42x10 ⁻⁶	1.10×10 ⁻⁴	
ODP (kg CFC-11 eq)	93%	2.19%	4.94%	100%	
FFD (A.4) C	1,090	21.7	71.4	1,180	
FFD (MJ Surplus)	92%	1.84%	6.05%	100%	
CML-IA					
CMD (I CO)	1,650	9.87	82.6	1,740	
GWP (kg CO ₂ eq)	95%	0.57%	4.74%	100%	
AD (1 - CO)	5.80	0.0376	0.367	6.20	
AP (kg SO_2 eq)	93%	0.61%	5.92%	100%	
FD (1 (DQ)3-	3.35	8.76x10 ⁻³	0.573	3.93	
EP (kg (PO ₄) ³⁻ eq)	85%	0.22%	14.55%	100%	
DOCD (1 C 11)	0.622	1.25x10 ⁻³	0.0192	0.642	
POCP (kg C ₂ H ₄ eq)	97%	0.19%	3.00%	100%	
000 (1 656 14)	8.21x10 ⁻⁵	1.80x10 ⁻⁶	3.97x10 ⁻⁶	8.79x10 ⁻⁵	
ODP (kg CFC-11 eq)	93.4%	2.1%	4.5%	100%	
ADDE (I. C.	3.79x10 ⁻⁴	8.99x10 ⁻⁸	5.14x10 ⁻⁶	3.84x10 ⁻⁴	
ADPE (kg Sb eq)	99%	0.02%	1.34%	100%	
1005 (14)	16,400	148	872	17,500	
ADPF (MJ)	94%	0.85%	5.00%	100%	

Table 17. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Masury, OH. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Parameter -	Life cycle stage				
	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	1,350	2.00	292	1,640	
A IXE (IVIJ)	82%	0.1%	18%	100%	
RPR _M (MJ)	0.00	0.00	59.6	59.6	
i IVW (IAI)	0%	0.0%	100%	100%	
NRPR _E (MJ)	15,100	142	693	15,900	
IKPKE (IVIJ)	95%	1%	4%	100%	
IRPR _M (MJ)	0.0	0.0	2.72	2.72	
IIXI IXM (IVIJ)	0%	0%	100%	100%	
`	0.791	0.000	0.000	0.791	
SM (MT)	100%	0.00%	0.00%	100%	
RSF/NRSF (MJ)	0	0	0	0	
RE (MJ)	0	0	0	0	
24// 25	18.0	0.0937	1.02	19.1	
W (m ³)	94.2%	0.49%	5.35%	100%	
Vastes					
HWD (kg)	0.0863	3.95x10 ⁻⁴	5.27x10 ⁻³	0.0920	
IVVD (Kg)	94%	0.430%	5.73%	100%	
II IM/D (kg)	834	7.26	91.8	933	
IHWD (kg)	89.4%	0.779%	9.8%	100%	
II DVV (I.e.)	4.94x10 ⁻³	1.15x10 ⁻⁵	1.78x10 ⁻⁴	5.13x10 ⁻³	
HLRW (kg)	96.3%	0.224%	3.5%	100%	
L D) ((l)	0.0356	1.03x10 ⁻³	1.27x10 ⁻³	0.0379	
LLRW (kg)	93.9%	2.71%	3.36%	100%	
CRU (kg)	0	0	0	0	
AD (L-)	0	0	64.4	64.4	
ЛR (kg)	0%	0%	100%	100%	
ЛER (kg)	0	0	0	0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	

Table 18. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Trenton, GA. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

TRACI 2.1	A1	A2	A3	T-4-1/44 40
TRACI 2.1			73	Total (A1-A3)
GWP (kg CO ₂ eq)	1,630	72.5	48.0	1,750
	93.10%	4.2%	2.7%	100%
AP (kg SO ₂ eq)	6.04	0.325	0.110	6.47
Ar (kg 302 eq)	93.3%	5.0%	1.7%	100%
ED (((a N o o)	7.06	0.0760	0.191	7.32
EP (kg N eq)	96%	1.04%	2.61%	100%
CED (L. O.)	88.7	8.07	1.20	98.0
SFP (kg O₃ eq)	91%	8.23%	1%	100%
	1.01×10 ⁻⁴	1.77x10 ⁻⁵	3.86x10 ⁻⁶	1.23x10 ⁻⁴
ODP (kg CFC-11 eq)	82%	14.36%	3.14%	100%
	1,080	160	62.5	1,300
FFD (MJ Surplus)	83%	12.25%	4.79%	100%
CML-IA				
CMD (La CO and)	1,650	72.7	48.5	1,770
GWP (kg CO ₂ eq)	93%	4.11%	2.75%	100%
15 /L 60	5.78	0.277	0.109	6.16
AP (kg SO ₂ eq)	94%	4.49%	1.78%	100%
	3.34	0.0645	0.0865	3.49
EP (kg (PO ₄) ³⁻ eq)	96%	1.85%	2.48%	100%
	0.620	0.00922	0.00672	0.636
POCP (kg C ₂ H ₄ eq)	97%	1.45%	1.06%	100%
	8.18x10 ⁻⁵	1.33x10 ⁻⁵	2.82x10 ⁻⁶	9.79x10 ⁻⁵
ODP (kg CFC-11 eq)	83.6%	13.6%	2.9%	100%
	3.78x10 ⁻⁴	6.62x10 ⁻⁷	1.07x10 ⁻⁷	3.79x10 ⁻⁴
ADPE (kg Sb eq)	100%	0.17%	0.03%	100%
	16,400	1,090	582	18,000
ADPF (MJ)	91%	6.05%	3.22%	100%

Table 19. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Trenton, GA. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

D	Life cycle stage				
Parameter -	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	1,340	14.8	123	1,481	
IXI IXE (IVIJ)	91%	1.0%	8.3%	100%	
RPR _M (MJ)	0.00	0.00	36.9	36.9	
IXI IXM (IVIJ)	0%	0.0%	100%	100%	
NRPR _E (MJ)	15,100	1,050	307	16,400	
INKERE (IVIJ)	92%	6%	2%	100%	
NRPR _M (MJ)	0.0	0.0	0.0	0.0	
	0.791	0	0	0.791	
SM (MT)	100%	0.00%	0.00%	100%	
RSF/NRSF (MJ)	0	0	0	0	
RE (MJ)	0	0	0	0	
TA (2)	17.9	0.690	0.0801	18.7	
FW (m ³)	95.9%	3.70%	0.4294%	100%	
Wastes					
HWD (kg)	0.0860	2.91x10 ⁻³	8.75x10 ⁻⁵	0.0890	
HVVD (kg)	97%	3.268%	0.10%	100%	
NII IVA/D (I)	831	53.5	1.44	885	
NHWD (kg)	93.8%	6.04%	0.2%	100%	
	4.92x10 ⁻³	8.47x10 ⁻⁵	1.03x10 ⁻⁵	0.00501	
HLRW (kg)	98.1%	1.69%	0.16%	100%	
	0.0355	7.56x10 ⁻³	1.17×10 ⁻⁴	0.0432	
ILLRW (kg)	82.2%	17.52%	0.27%	100%	
CRU (kg)	0	0	0	0	
115 (1.)	0	0	9.39	9.39	
MR (kg)	0%	0%	100%	100%	
MER (kg)	0	0	0	0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	

The PCR require the calculation of carbon emissions and removals, all of which are negligible due to the fact that no biogenic carbon is included in the product and any packaging is negligible.

Table 20. Life Cycle Impact Assessment (LCIA) results for Bull Moose Tube steel pipe and tube at Sinton, TX. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Life cycle stage			
Impact Category	A1	A2	A3	Total (A1-A3)
TRACI 2.1				
GWP (kg CO ₂ eq)	1,070	3.23	51.2	1,120
	95.1%	0.29%	4.56%	100%
AP (kg SO ₂ eq)	4.25	0.0216	0.117	4.38
71 (Kg 302 eq)	96.84%	0.49%	2.67%	100%
ED (kg NLog)	4.50	8.66x10 ⁻³	0.396	4.91
EP (kg N eq)	92%	0.18%	8.06%	100%
	61.1	0.506	1.11	62.7
SFP (kg O₃ eq)	97.42%	0.81%	1.77%	100%
ODD (1 - CEC 44)	1.21×10 ⁻⁴	4.49x10 ⁻⁷	4.24x10 ⁻⁶	1.26x10 ⁻⁴
ODP (kg CFC-11 eq)	96.27%	0.36%	3.37%	100%
55D () ()	1,290	4.38	70.5	1,370
FFD (MJ surplus)	95%	0.32%	5.16%	100%
CML-IA				
CMD (kg CO og)	1,080	3.26	51.7	1,135
GWP (kg CO_2 eq)	95%	0.29%	4.55%	100%
AD (I CO)	4.10	1.85x10 ⁻²	0.123	4.24
AP (kg SO ₂ eq)	97%	0.44%	2.90%	100%
ED (1 - (DQ)3)	2.13	5.77x10 ⁻³	0.171	2.31
EP (kg (PO ₄) ³⁻ eq)	92%	0.25%	7.43%	100%
2000 (1 0 11)	0.335	1.04x10 ⁻³	0.00769	0.343
POCP (kg C ₂ H ₄ eq)	97%	0.30%	2.24%	100%
000 (1 656 44)	9.59x10 ⁻⁵	3.38x10 ⁻⁷	3.31x10 ⁻⁶	9.96x10 ⁻⁵
ODP (kg CFC-11 eq)	96%	0.34%	3.32%	100%
4 D D E (1 Cl)	2.74×10 ⁻⁴	1.25x10 ⁻⁷	7.70×10 ⁻⁷	2.75×10 ⁻⁴
ADPE (kg Sb eq)	100%	0.05%	0.28%	100%
1555 (11)	12,400	38.8	618	13,000
ADPF (MJ)	95%	0.30%	4.74%	100%

Table 21. Resource use and waste flows for Bull Moose Tube steel pipe and tube at Sinton, TX. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Dayamatay	Life cycle stage				
Parameter	A1	A2	A3	Total (A1-A3)	
Resources					
RPR _E (MJ)	965	4.36	134	1,100	
THE (IVIJ)	87%	0%	12%	100%	
RPR _M (MJ)	0.0	0.0	0.0	0.0	
1 (1 (((((((((((((((((n/a	n/a	n/a	n/a	
NRPR _E (MJ)	9,490	36.4	474	10,000	
INIXE IVE (IVIJ)	95%	0%	5%	100%	
NRPR _M (MJ)	0.00	0.00	0.00	0.00	
CNA (NAT)	1,360	0.0	0.0	1,360	
SM (MT)	100%	0%	0%	100%	
RSF/NRSF (MJ)	0.0	0.0	0.0	0.0	
RE (MJ)	0.0	0.0	0.0	0.0	
 25	13.2	0.0500	0.0889	13.3	
FW (m ³)	99%	0.4%	0.7%	100%	
Wastes					
HWD (kg)	0.0405	1.60x10 ⁻⁴	3.40x10 ⁻⁴	0.0410	
TIVD (Ng)	99%	0.4%	0.8%	100%	
NHWD (kg)	678	0.554	2.92	682	
MITVO (Kg)	99%	0.1%	0.4%	100%	
HLRW (kg)	3.09x10 ⁻³	5.643x10 ⁻⁶	4.20x10 ⁻⁴	3.52x10 ⁻³	
TLRVV (Kg)	88%	0.2%	11.9%	100%	
ILL DVV (lcg)	0.0314	1.90x10 ⁻⁴	1.97x10 ⁻³	0.0335	
ILLRW (kg)	94%	0.6%	5.9%	100%	
CRU (kg)	0.0	0.0	0.0	0.0	
MD (lea)	0.0910	0.0	0.123	0.214	
MR (kg)	42%	0.0%	57.6%	100%	
MER (kg)	0.0	0.0	0.0	0.0	
EE (MJ)	Neg.	Neg.	Neg.	Neg.	

The PCR require the calculation of carbon emissions and removals, all of which are negligible due to the fact that no biogenic carbon is included in the product and any packaging is negligible.

6. LCA: Interpretation

The contributions to total impact indicator results are dominated by the steelmaking phase (A1), followed by either the tube mill (A3) or transportation of unfabricated tube to the pipe mill (A2), depending upon the indicator. For the Burlington, ON and the Masury, OH mills, the tube mill (A3) impacts are smaller than the transportation (A2) impacts across all indicators.

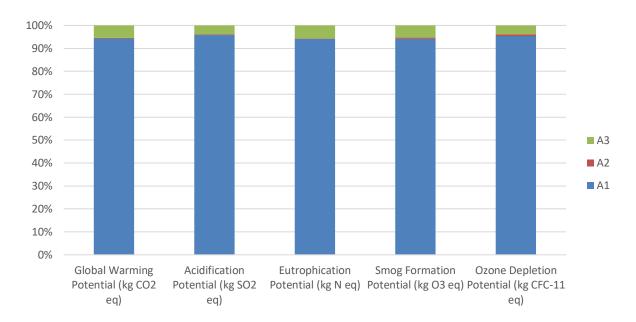
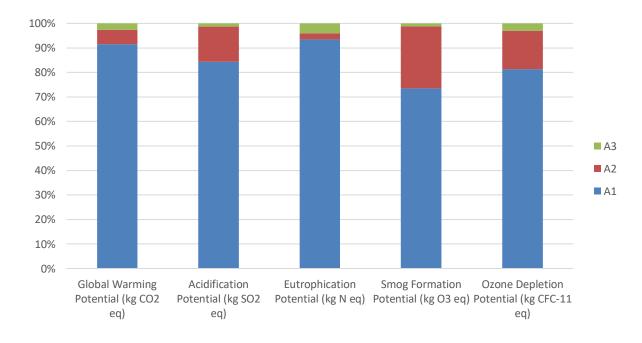
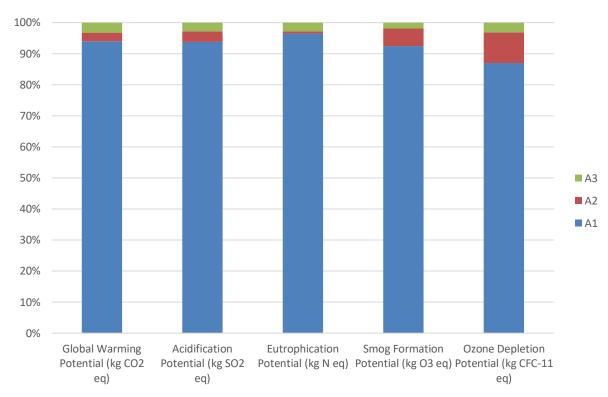
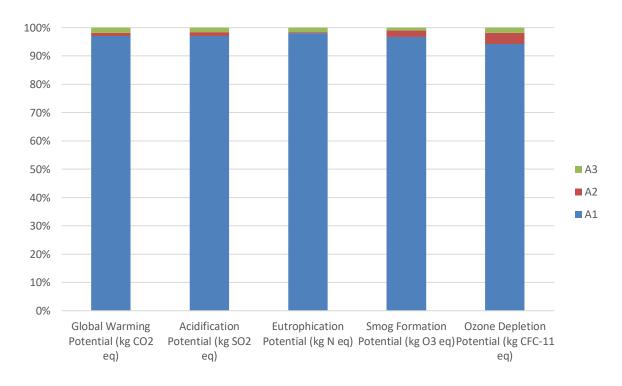
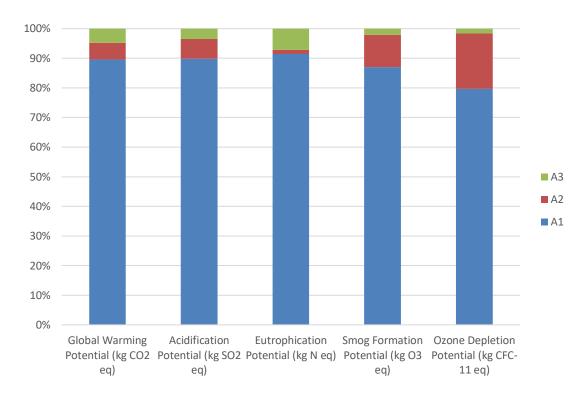



Figure 2. Contribution analysis for the Bull Moose Tube steel pipe and tube at the Burlington, ON facility, using TRACI 2.1.

Figure 3. Contribution analysis for the Bull Moose Tube steel pipe and tube at the Casa Grande, AZ facility, using TRACI 2.1.

.....

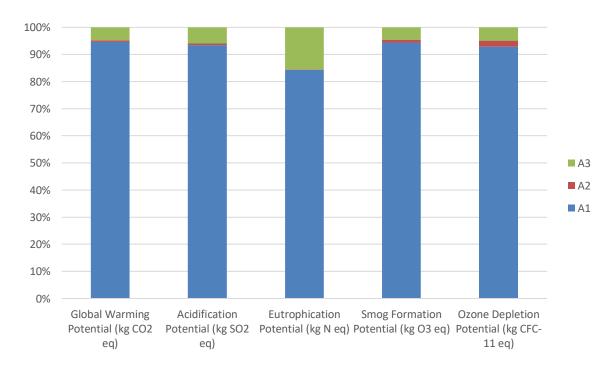

Figure 4. Contribution analysis for Bull Moose tube produced at the Chicago Heights, IL facility, using TRACI 2.1

Figure 5. Contribution analysis for Bull Moose tube produced at the Elkhart, IN facility, using TRACI 2.1.

Figure 6. Contribution analysis for Bull Moose tube produced at the Gerald, MO facility, using TRACI 2.1.

Figure 7. Contribution analysis for Bull Moose tube produced at the Masury, OH facility, using TRACI 2.1.

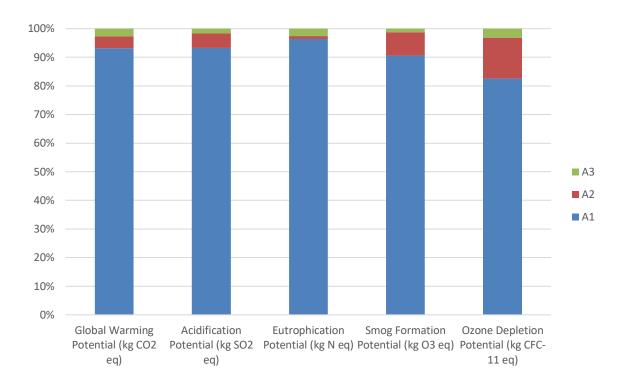
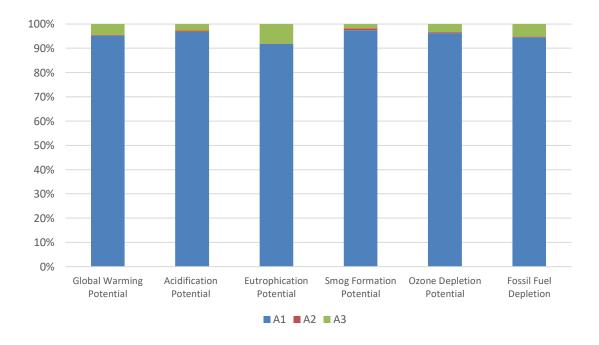



Figure 8. Contribution analysis for Bull Moose tube produced at the Trenton, GA facility, using TRACI 2.1.

Figure 9. Contribution analysis for Bull Moose tube produced at the Sinton, TX facility, using TRACI 2.1.

.....

31

7. References

- 1. Life Cycle Assessment of Steel Pipe and Tube. SCS Global Services Report. Prepared Bull Moose Tube. Version: June 2024.
- 2. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 3. ISO 14040: 2006/Amd 1:2020 Environmental Management Life cycle assessment Principles and Framework
- 4. ISO 14044: 2006/Amd 1:2017/Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 5. ISO 21930: 2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- 6. PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 3.2. UL Environment. Sept. 2018
- 7. SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0 December 2023. SCS Global Services.
- 8. Bare, J. C. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), Version 2.1 User's Manual; EPA/600/R-12/554 2012. https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
- 9. CML-IA Characterization Factors. Leiden University, Institute of Environmental Sciences. April 2013. http://cml.leiden.edu/software/data-cmlia.html
- 10. Ecoinvent Centre (2020) ecoinvent data from v3.7.1 Swiss Center for Life Cycle Inventories, Dübendorf, 2020, http://www.ecoinvent.org
- 11. European Joint Research Commission. International Reference Life Cycle Data System handbook. *General guide for Life Cycle Assessment Detailed Guidance*. © European Union, 2010.
- 12. "WARM Model Transportation Research Draft." Memorandum from ICF Consulting to United States Environmental Protection Agency. September 7, 2004.

For more information, contact:

Bull Moose Tube

+1.888.227.5430 | www.bullmoosetube.com | techsupport@bullmoose.com

Burlington, ON

2170 Queensway Dr. Burlington, Ontario L7R 3T1, Canada

Casa Grande, AZ

1001 North Jefferson Ave. Casa Grande, AZ 8512

Chicago Heights; IL

555 E 16th St.

Chicago Heights, IL 60411

Elkhart, IN

29851 County Rd. 20 West Elkhart, IN 46517 Gerald, MO

406 E Industrial Dr./Hwy. 50 Gerald, MO 63037

Masury, OH

1433 Standard Ave. SE Masury, OH 44438

Sinton, TX

8534 Hwy 89

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001